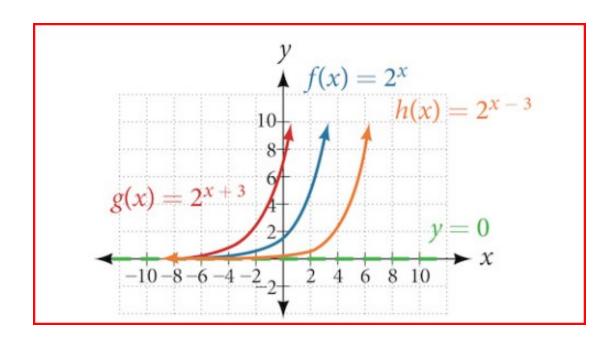
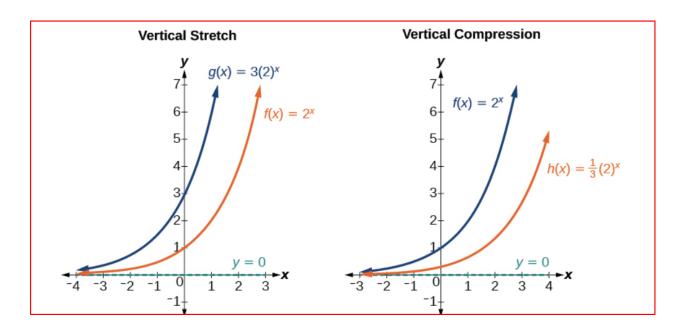
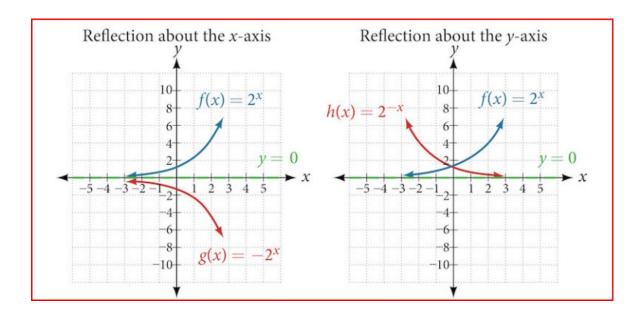

Graphs of Exponential Functions

Key Points:

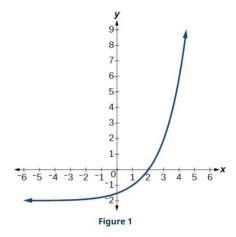

- The graph of the function $f(x) = b^x$ has a y –intercept at (0, 1), domain $(-\infty, \infty)$, range $(0, \infty)$, and horizontal asymptote y = 0.
- If b > 1, the function is increasing. The left tail of the graph will approach the asymptote y = 0, and the right tail will increase without bound.
- If 0 < b < 1, the function is decreasing. The left tail of the graph will increase without bound, and the right tail will approach the asymptote y = 0.


• The equation $f(x) = b^x + d$ represents a vertical shift of the parent function $f(x) = b^x$.


• The equation $f(x) = b^{x+c}$ represents a horizontal shift of the parent function $f(x) = b^x$.

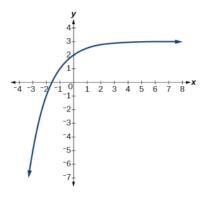
• The equation $f(x) = ab^x$, where a > 0, represents a vertical stretch if |a| > 1 or compression if 0 < |a| < 1 of the parent function $f(x) = b^x$.

• When the parent function $f(x) = b^x$ is multiplied by -1, the result, $f(x) = -b^x$, is a reflection about the x-axis. When the input is multiplied by -1, the result, $f(x) = b^{-x}$, is a reflection about the y-axis.

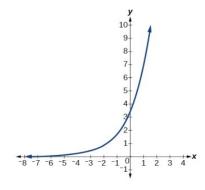

Graphs of Exponential Functions Videos

- Sketching the Graph of an Exponential Function of the form f(x)=b^x:
 Example 1
- Sketching Transformations of Exponential Functions: Shifts- Example 2
- Sketching Transformations of Exponential Functions: Vertical Compression-Example 3
- <u>Sketching Transformations of Exponential Functions: Vertical Stretch-Example 4</u>
- Transformation of Exponential Function: Reflection-Example 5
- Writing a Function from Description-Example 6

Practice Exercises


Follow the directions for each exercise below:

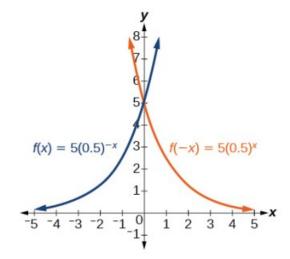
- 1. Graph the function $f(x) = 3.5(2)^x$. State the domain and range and give the yintercept.
- **2.** Graph the function $f(x) = 4\left(\frac{1}{8}\right)^x$ and its reflection about the y-axis on the same axes, and give the y-intercept.
- **3.** The graph of $f(x) = 6.5^x$ is reflected about the y-axis and stretched vertically by a factor of 7. What is the equation of the new function, g(x)? State its y-intercept, domain, and range.
- **4.** The graph below shows transformations of the graph $y = 2^x$. What is the equation for the transformation?


5. Graph the function $f(x) = 5(0.5)^x$ and its reflection across the y-axis on the same axes, and give the y-intercept.

6. The graph shows transformations of the graph of $f(x) = \left(\frac{1}{2}\right)^x$. What is the equation for the transformation?

Answers:

1. Domain: all real numbers; range: all real numbers strictly greater than zero; y-intercept: (0, 3.5);



2. y —-intercept: (0,4);

$$f(-x) = 4\left(\frac{1}{8}\right)^{-x}$$

$$f(x) = 4\left(\frac{1}{8}\right)^{x}$$

- **3.** $g(x) = 7(6.5)^{-x}$; y-intercept: (0, 7); domain: all real numbers; range: all real numbers greater than zero.
- **4.** $g(x) = \frac{1}{2}(2)^x 2$
- **5.** *y*-intercept: (0, 5);
- **6.** $g(x) = -\left(\frac{1}{2}\right)^x + 3$

